Bijective Composite Mean Value Mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Lipschitzian Mappings

Lipschitz self mappings of metric spaces appear in many branches of mathematics. In this paper we introduce a modification of the Lipschitz condition which takes into account not only the mapping itself but also the behaviour of a finite number of its iterates. We refer to such mappings as mean Lipschitzian. The study of this new class of mappings seems potentially interesting and leads to some...

متن کامل

Bijective Mappings with Generalized Barycentric Coordinates: A Counterexample

Many recent works attempt to generalize barycentric coordinates to arbitrary polygons. I construct a counterexample proving that no such generalization will produce purely bijective mappings in the plane provided the coordinates meet the Lagrange, reproduction, and partition of unity properties. The proof concerns generalized barycentric coordinates in a square, but trivially generalizes to arb...

متن کامل

On the Affine Equivalence and Nonlinearity Preserving Bijective Mappings

It is well-known that affine equivalence relations keep nonlineaerity invariant for all Boolean functions. The set of all Boolean functions, Fn, over IF n 2 , is naturally regarded as the 2 n dimensional vector space, IF n 2 . Thus, while analyzing the transformations acting on Fn, S22n , the group of all bijective mappings, defined from IF 2 2 onto itself should be considered. As it is shown i...

متن کامل

MEAN VALUE INTERPOLATION ON SPHERES

In this paper we consider   multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have   concentric spheres. Indeed, we consider the problem in three variables when it is not correct.  

متن کامل

On the injectivity of Wachspress and mean value mappings between convex polygons

Wachspress and mean value coordinates are two generalizations of triangular barycentric coordinates to convex polygons and have recently been used to construct mappings between polygons, with application to curve deformation and image warping. We show that Wachspress mappings between convex polygons are always injective but that mean value mappings can fail to be so in extreme cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Graphics Forum

سال: 2013

ISSN: 0167-7055

DOI: 10.1111/cgf.12180